Modelling of corrosion in the Port of Rotterdam

From measurements to prediction of the intervention time

Port of Rotterdam

More than 50 kilometres !

Salinity in the port

Port in figures

- Total port area 26,000 acres (net 12,500 acres)
- Total employment 350,000 people (140,000 regionally)
- Throughput 430 million tons, 11,1 million TEU (2010)
- Depth up to 75 ft (= 24 m)
- Port is growing westwards from the old town with fresh water of river Rhine into the salt Northsea
- Tidal zone ca. 2 meter in the whole port

Port infrastructure in Rotterdam

- Quay walls: total length 70 km
- O Replacement value ~ 1.5 billion €
- About 40 km with steel substructures, like combi walls, sheet piling, etc.

Asset Management on Quay Walls

- A quay wall's remaining lifetime and system integrity is mainly determined by the quality of the sub and superstructure.
- When the quay wall's integrity is in danger, it's often due to:
 - o concrete deterioration in the superstructure
 - accelerated low water corrosion occurring at the substructure

Corrosion strategy (up to 1999)

- Corrosion rates according to EAU-Curves
- No steel but concrete in the splash-zone
- Extra thickness added to steel parts
- Inspection of a few quay walls every 5 year

What was discovered ?

Before cleaning with high pressure

After cleaning with high pressure

Unexpected corrosion

Hole, followed by loss of soil

Original thickness including original coating

Holes in tubular piles

Probable causes (long list)

- More salty environment
- Galvanic corrosion of combiwalls
- pitting influences on the strength
- Aeration due to extra oxygen by (bow) thrusters or cooling
- Fabrication process of steel parts
- Water flow
- Cathodic protection to the ship
- Vertical layering of water (temperature, oxygen, salinity)
- MIC
- Etc...

Action plan for investigation

- Coupon ladder
- Coupons (galvanic cells)
- Micro biological influence
- Weakening due to pitting
- O Thickness measurement

Stress corrosion test

Coupons for galvanic corrosion test

Port of Rotterdam

Coupon ladder test

Results of coupon ladder

Port of Rotterdam

Research influence MIC Image: Constraint of the second s

Weakening due to pitting

Kracht- rek diagram 78547-8 Westerkade

Ultrasonic measurements

Port of Rotterdam

- Method: Ultrasonic measurement
- Inspection locations: horizontal & vertical
- Amount of inspections: one million points
- Inspection results processed statistically
- Representative values: (incl. pitting!)

Corrosion rate in specific conditions

- What is the salinity (fresh, 10 ppm < brackish <25 ppm, salt)?
- Steel quality and electro-chemical corrosion?
- Biological activity (general in salt water, sometimes in fresh)?
- Galvanic cells (e.g. combi-walls, repair, welding joints)?
- Fabrication influence (e.g. purity mix, cold rolled)?
- Extra high oxygen level (e.g. propellers, cooling system)?
- High flow velocities because of geometry ?
- Strong vertical differences in fresh and salt layers?
- Cathodic protection on board of moored ships?

Contribution of influences

	Causes / influences	Fresh	Brackish	Salt
1	Electrochem. Corrosion	5%	5%	9%
2	Biological activities	5%	9%	18%
3	Galvanic influence	0%	9%	27%
4	Fabrication	0%	5%	5%
5	Aeration	5%	5%	9%
6	Local high waterflow	0%	5%	9%
7	Vertical salt-fresh layers	0%	5%	0%
8	Cath. prot. on board of ship	5%	5%	5%
9	Splash-zone	18%	18%	18%
	Relative Contribution	38%	66%	100%
	Avg. corrosion [mm/50yr]	3,4	5,9	9,0
	Max. corrosion [mm/50yr]	10,3	17,8	27,0

Corrosion scales and measures

Port of Rotterdam

 Subsets of uniform corrosion conditions and uniformized measurements

Overview

25

 Uniform group of measurements are placed on the corrosion scales (example: average 1,9 mm after 16 years)

Port of Rotterdam

- Uniform group of measurements are placed on the corrosion scales
- Extrapolation of corrosion within scales (example between scale 3 and 4)

Standard Corrosion Scales Input new Quaywall standard scale 1 10,000 9,000 8,000 7,000 Total average corrosion [mm] 6,000 5,000 4,000 3,000 2,000 1,000 0,000 2 0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Year

- Uniform group of measurements are placed on the corrosion scales
- Extrapolation of corrosion within scales
- Translation of corrosion to degradation (example remaining safety factor 1,30)
- Prediction of remaining lifetime

Input for KMS

- KMS: Quay wall modelling system
- O Port of Rotterdam's next step in asset management
- Supports the asset manager
- Combines technical risk and business value in order to prioritise maintenance measure
- Degradation model is part of KMS

Degradation model in KMS

Port of Rotterdam

Ongoing research to improve the steel model

Presentation corrosion research

Risks on CP systems

- Unsufficient protection
 Caused by anodes that don't work properly
- Incomplete coverage of structure Caused by mechanical damage
- Decrease of the anode lifetime Caused by higher load on anode than designed due to changing conditions

Monitoring of CP systems

Port of Rotterdam

- Visual inspections with divers
- mV measurement
- Weighing of anode to measure consumption in time
- US thickness measurement
- Condition monitoring

Monitoring water conditions

- Monitoring of:
 - Conductivity / Salanity
 - Temperture of the water
 - o pH
 - Dissolved oxygen

Results of monitoring @PoR

- mV is more than sufficient
- Brackish/ fresh water : anode consumption is lower than in salt conditions
- In salt water, the consumption is less at end of life of the anode
- Development of anode model

Thanks for your attention !